The card-based tool for co-design workshop on smart material applications in automotive interiors

Front side **II** Back side

Material Card (Technology Card Set)

Each card is printed in real size.

Changing Melituralle

Changing 42.2

By flowing liquids of different temperatures through fine channels beneath the surface of an object, the surface temperature of the material

An illustration of the "material palette"

Shapechanging

Fiber

When gas or hydraulic pressure is applied, the length of the contracting (stretching) muscle fibers shortens (elongates), generating linear force in the direction of tension.

Material

Soft tube

Actuation

Pneumatics/Hydraulics

Fabrication

Weaving, knitting

Shapechanging

Fiber

Application Space

• Under a tensile strain rate of 18 mm/sec, the sensor's resistance can reach a strain of 130% over 10 iterations. In a Ø=0.9 mm, 53A fiber configuration, the supply pressure is incrementally changed by 100 kPa, ranging from 100 kPa to 600 kPa. The maximum contraction ratio obtained from the vertical displacement rail is 32%, and the force generated at 600 kPa is 8.8 N.

Shapechanging

Fiber

By selecting different shape memory alloys and custom-woven substrates, three basic deformations—bending, expansion, and contraction—can be achieved.

Material

SMA, textile

Actuation

Electricity

Fabrication

Weaving

Shapechanging

Fiber

Application Space

- The rated standard driving voltage for the SMA wire is 20.7 V/m, and the standard driving current is 340 mA, generating a force of 1.47 N and a dynamic strain of 4%. When the ratio of constrained SMA length to flexible SMA length is 6, the bending angle is approximately 90°.
- A tubular patch sample was made using silk yarn on a 3-inch wide loom setup, with an initial thickness of 0.561 mm, an increased height of 36.5 mm, and an expansion force of 0.1619 N.
- A 16-turn SMA spring with an initial length of 43 mm was installed in a linen x silk x plain weave fabric patch. The patch was powered with 1.7 V and 1 A, providing an average pulling force of 3.94 N on a weight.
- On a 266.8 g/m² 100% polyester fleece, the patch exhibited an expansion length of 20-25 mm, a bending angle of 10-20°, and a contraction ratio of 0.4.

Patch-O, Ku. et al, ACM CHI'22

When conductive weft yarns and luminous warp yarn fibers are woven with cotton yarn, each interwoven warp and weft forms an EL unit, which emits light when an alternating voltage is applied.

Material

Electroluminescent fiber, conductive fiber

Actuation

AC electricity

Fabrication

Weaving, knitting, embroidery

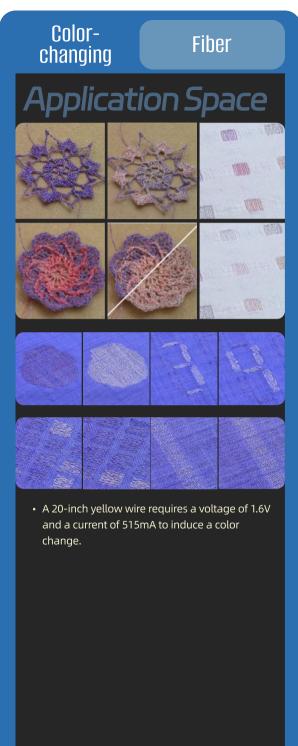
• At a voltage of 3.7 V μm^{-1} and a frequency of 2000 Hz, the current density is 1.8 mA·cm⁻², the power consumption is 363.1 μ W, and the brightness is 115.1 cd·m⁻².

Large-area display textiles integrated with functional systems, Shi. et al, Nature volume 591(2021)

Colorchanging

Fiber

Conductive wires are coated with thermochromic pigment, which generates heat when powered, causing the pigment to change from an opaque state to a transparent state. When the pigment cools down, it returns to its opaque state.


Material

Thermochromic fiber

Actuation Electricity

Fabrication

Knitting, weaving, embroidery

"I don't want to wear a screen", Devendorf. et al, ACM CHI'16

Shapechanging

Membrane

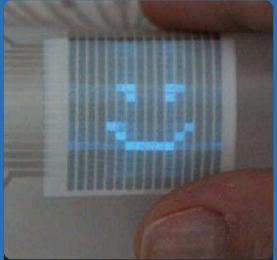
The membrane is welded into a specific pattern to form a membrane-like airbag. When the airbag inflates, the internal pressure increases, causing the airbag to bulge and drive the membrane to deform.

Material

Flexible membrane e.g., TPU, silicone

Actuation

Pneumatics


Fabrication

Welding, hot pressing, adhesive bonding, etc.

Lightemitting

Membrane

A thin-film electroluminescent display consists of two overlapping electrodes. When an alternating signal is applied, the electroluminescent coating between the electrodes lights up, causing the display to emit light.

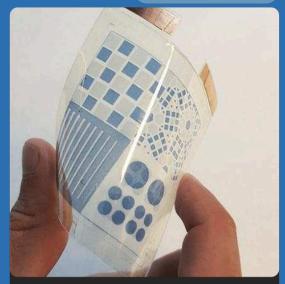
Material

Electroluminescent coating, electrode coating

Actuation

AC electricity

Fabrication


Multilayer screen printing, conductive inkjet printing

PrintScreen, Olberding. et al, ACM UIST'14

Colorchanging

Membrane

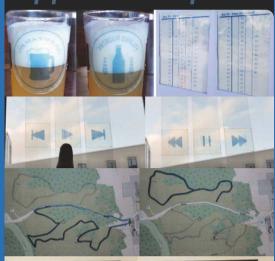
When a voltage is applied, the electrochromic material can change its color from nearly transparent to a deeper blue.

Material

Electrochromic ink, transparent electrode

Actuation

Electricity


Fabrication

Screen printing, inkjet printing

Colorchanging

Membrane

The ink will naturally fade within a few hours.
 The switching time ranges from 1.1s to 5.1s, with an average current consumption of 2-4 mA and a power consumption of 4-8 mW.

TransPrint, Jensen. et al, Advances in Human-Computer Interaction <u>Volume 2019</u>

Temperaturechanging

Membrane

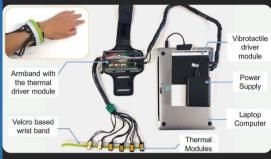
A Peltier element array can heat up or cool down when powered, thereby altering the surface temperature of the object.

Material

Peltier element array

Actuation

Electricity


Fabrication

Embedded or attached onto a flexible substrate

Temperaturechanging

Membrane

Application Space



 The component's heating and cooling time by 3°C is approximately 1 second. At a current of 1A, a single element has a maximum cooling capacity of 94 mW, with the cold side temperature reaching 8.7°C.

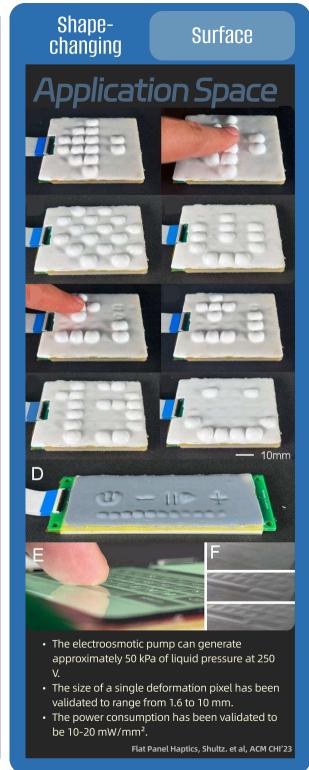
ThermalBracelet, Peiris. et al, ACM CHI'19

Shapechanging

Surface

Each deformation pixel consists of an electroosmotic pump. When an electric field is applied, the liquid inside the pixel flows upward, causing the top membrane layer to undergo bulging or indentation deformation.

Material


Electroosmotic pump

Actuation

Electro-hydraulics

Fabrication

Custom Shapes Embedded Installation

Lightemitting

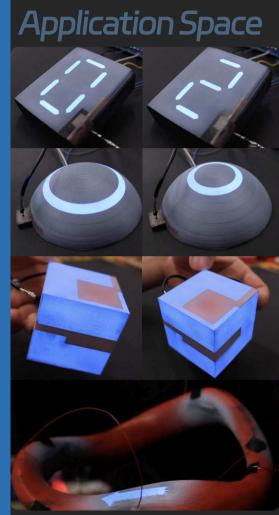
Surface

By spraying electrodes and luminescent materials onto the surface of an object, a display can be achieved on any shaped surface when an alternating electric field is applied.

Material

Electroluminescent coating, electrode coating

Actuation


AC electricity

Fabrication

Spraying, spray painting, spray coating, etc.

Lightemitting

Surface

 Electroluminescent materials can emit light when driven by 100-200V DC or AC power. A single luminescent material typically emits only one fixed color.

ProtoSpray, Ollie. et al, ACM CHI'20

Colorchanging

Surface

Photochromic pigments are sprayed on the surface of an object, and when exposed to different colors of light, the pigments change to different colors.

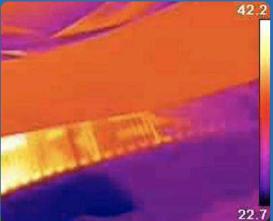
Material

Photochromic pigments

Actuation

Exposure

Fabrication

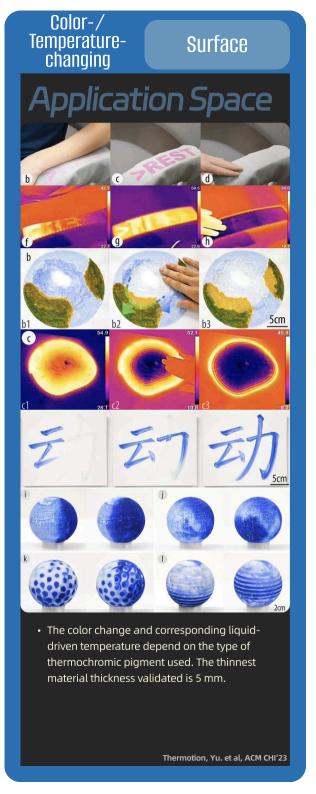

Spraying, spray painting, spray coating, etc.

 Upon UV exposure, the pigment turns black; under different visible light exposures, the pigment can change to other colors. The coloration time of the pigment depends on the intensity of the exposure source, typically requiring 1-10 minutes. The natural fading time of the pigment is influenced by the ambient light intensity, usually taking 5-24 hours. The pigment has a limited color range, with green being particularly lacking in the coloration spectrum.

Photo-Chromeleon, Jin. et al, ACM UIST'19

By flowing liquids of different temperatures through fine channels beneath the surface of an object, the surface temperature of the material can be dynamically altered.

Material


Fluidic channel layer

Actuation

Thermofluidics

Fabrication

Custom shape embedded installation

Shape-/ Stiffnesschanging

3D structure

When the material is inflated, it softens, and the structural shape can be changed through the length adjustment of the telescopic rods. When the material is vacuumed, it hardens, and the altered shape remains fixed.

Material

Linear actuators, Particles

Actuation

Electricity, vacuum

Fabrication

Custom shape installation

Shape-/ Stiffnesschanging

3D structure

 The deformation extent of the material depends on the telescopic range of the rods.
 The elongation in one direction has been validated to reach up to 170% of its original length.

xSlate, Hirai. et al, ACM CHI EA'18

Shapechanging

3D structure

The structure exhibits shape memory properties when inflated, allowing the balloon to quickly switch between several preset shapes through simple bending and adjustments.

Material

Plastic film (TPU, PEPA)

Actuation

Pneumatics

Fabrication

Welding, hot pressing, adhesive bonding, etc.

Shapechanging

3D structure

- It is possible to design a switching swing angle of 40°-100° and a switching twist angle of 30°-35°. The structural size can be designed within a range of a few centimeters to 1 meter. The higher the inflation pressure, the greater the force required for switching and the shorter the switching time.
- Reference data: A single bending joint of 14 x 6 cm, with an inflation pressure of 30 kPa, requires a switching force of 3.8 N and a switching time of 1.5 ms. Additionally, the switching force is also influenced by the plastic membrane material and structural size.

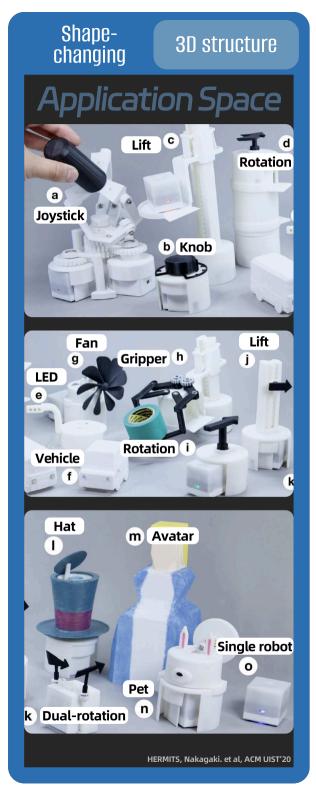
Snapinflatables, Yang. et al, ACM CHI'24

Shapechanging

3D structure

With several small robots capable of translation and rotation, along with various modular shells, different movement modes and interactive functions can be achieved.

Material


Modular shell

Actuation

Robotics

Fabrication

Manual installation

Lightemitting

3D structure

Use reflective materials and lightdiffusing fillers to design the distribution of LED light in threedimensional space.

Material

Reflective/diffusing mirror, LED light

Actuation

Electricity

Fabrication

Custom shape installation

Colorchanging

3D structure

By weaving transparent tubes into a three-dimensional structure, dynamic color changes in the 3D structure can be achieved by flowing different colored liquids through the tubes.

Material

Transparent tube, liquid

Actuation

Hydraulics

Fabrication

Custom shape installation, tubular weaving

Application Space

Material

Actuation

Fabrication

Input Card (Technology Card Set)

Long press

Hold down the specified area continuously.

Touch

Lightly touch the specified area.

Click

Quickly press and release the specified area.

Double click

Quickly press the specified area twice in succession.

Swipe

Swipe your finger across the specified area.

Drag

Hold and move the object or icon.

Pinch

Pinch with two fingers to zoom out or spread them to zoom in.

Rotate

Rotate the knob or draw a circle with your finger in the specified area.

Tap

Gently tap the screen or button.

Voice command

Operate using voice commands.

Air gesture

Use gestures in the air for operations, such as waving or pointing.

Press

Press the physical button.

Eye movement

Control the interface through eye movement.

Body movement

Trigger operations through body movements (such as adjusting seating posture).

Facial expression

Recognize and operate through facial expressions or movements.

Write or draw in the specified area.

Sensor

Such as temperature sensing, humidity sensing, etc.

User Card (Objective Card Set)

Elderly

Passengers who may require a higher level of comfort and safety.

Business professionals

Individuals who may need to handle work matters inside the vehicle.

Children

Pets

Families

Including parents, children, and other family members.

Friends

Close friends and relatives who have a tight social bond with the driver.

Users who have an intimate relationship.

Users on long journeys or who are unable to get out of the vehicle for an extended period.

Users who commute daily.

People with disabilities

Special groups that require individual consideration in terms of mobility.

High-end customers

Users with a higher social status who have high demands for incar facilities and services.

Music enthusiasts

Users with a need for vehicle travel.

Such as police officers, firefighters, and emergency medical personnel.

Environmentalists

People who are concerned about the vehicle's environmental performance and energy-saving technologies.

Fitness enthusiasts

Individuals who may need the comfortable space inside the vehicle for small fitness activities.

Infants

Emotion Card (Objective Card Set)

Joy

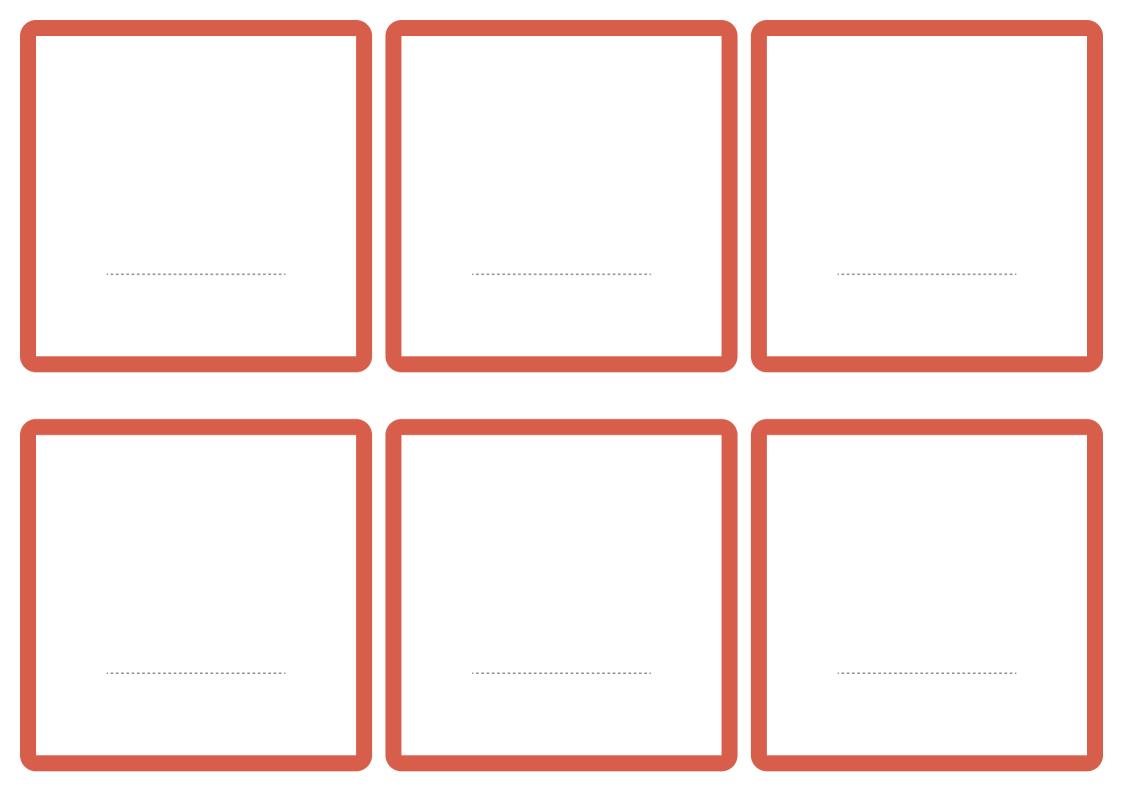
Anger

Boredom

Relaxation

Anxiety

Sleepiness

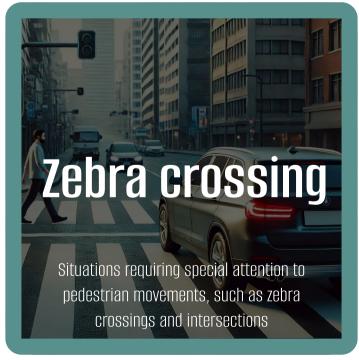

Disappointment

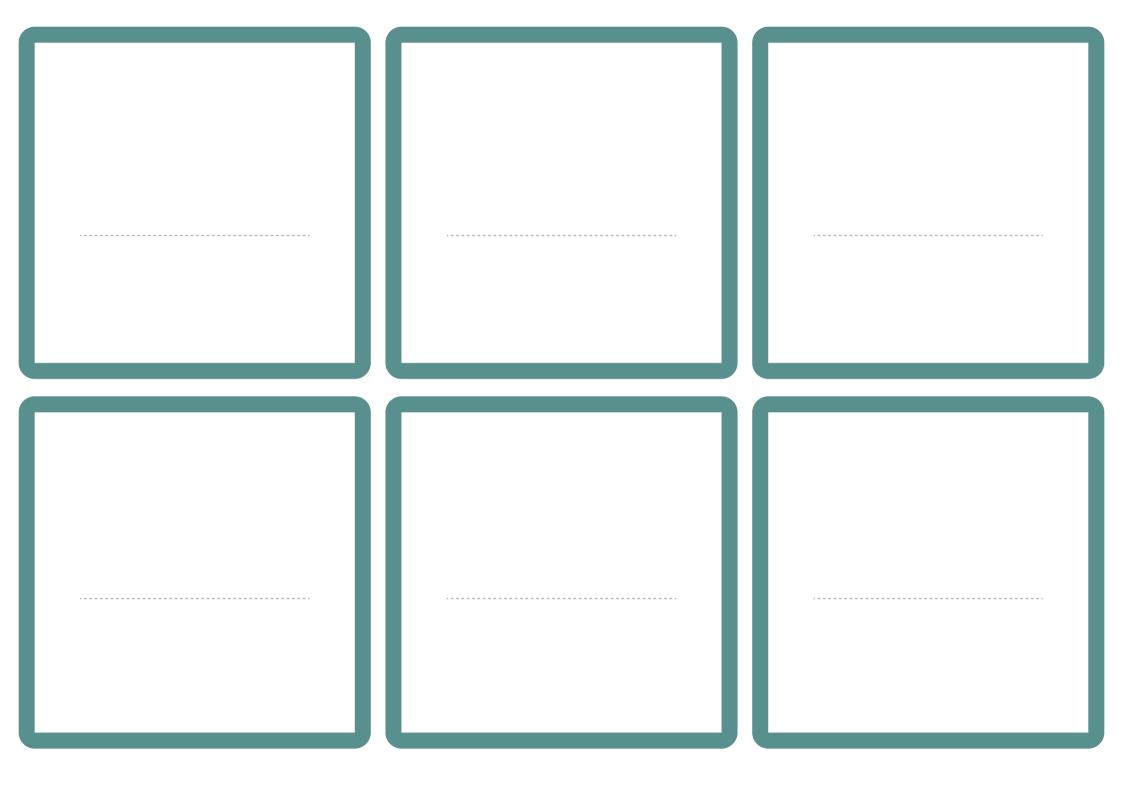
Curiosity

Guilt

Scenario Card (Objective Card Set)







Evaluation Card

Researcher >-

Materials

Selection, substitution, and optimization of materials involve multiple performance evaluations, such as mechanical properties, thermal properties, biocompatibility, etc.

Researcher >_

Actuation mechanisms

Actuation methods, control methods, power supply methods, etc., involve energy consumption, controllability, response speed, and other factors.

Researcher >-

Manufacturing processes

Selection, substitution, and optimization of processes involve feasibility, compatibility, and cost of production processes.

Please provide your feedback and suggestions!

Please provide your feedback and suggestions!

Researcher >_

Design and application methods

Customization and design of various structures and functions to meet different requirements.

Researcher >-

Input methods

Triggering and response methods of system functions to form a complete interaction loop and meet various needs.

Please provide your feedback and suggestions!

Researcher >-

	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	

Designer

Designer

Designer

Aesthetics

Visual effects, color combinations, style consistency, etc.

Creativity

Is the design innovative, inspiring users' desire to explore and curiosity?

Sustainability

Are environmental protection and sustainability considered in the materials, production, and other processes?

Please provide your feedback and suggestions!

Please provide your feedback and suggestions!

Designer

Usability

Does it meet the functions required by users? Is the product clear and easy to use?

Designer

Emotional experience

Can it evoke emotional resonance in users?

Please provide your feedback and suggestions!

Designer

Please provide your feedback and suggestions!

Industry

Customer Benefits

Does it meet user needs? How strong is the demand, and how much benefit does it bring to users?

Industry

Brand Identity

How's the brand image?Does it align with the company's attributes, values, and core strategy?

Please provide your feedback and suggestions!

Industry

Market Competitiveness

Compared to competitors, how are its innovation, advantages, and disadvantages?

Does it align with future market trends?

Compared to competitors, how are its innovation, advantages, and disadvantages?

Does it align with future market trends?

Please provide your feedback and suggestions!

Industry

Production Process

What changes will it bring to existing production processes? Does it match the supply chain? Is it stable and feasible? If it needs to be converted into a product, how long will it take?

Industry

Engineering Feasibility **Industry**

.....

Please provide your feedback and suggestions!

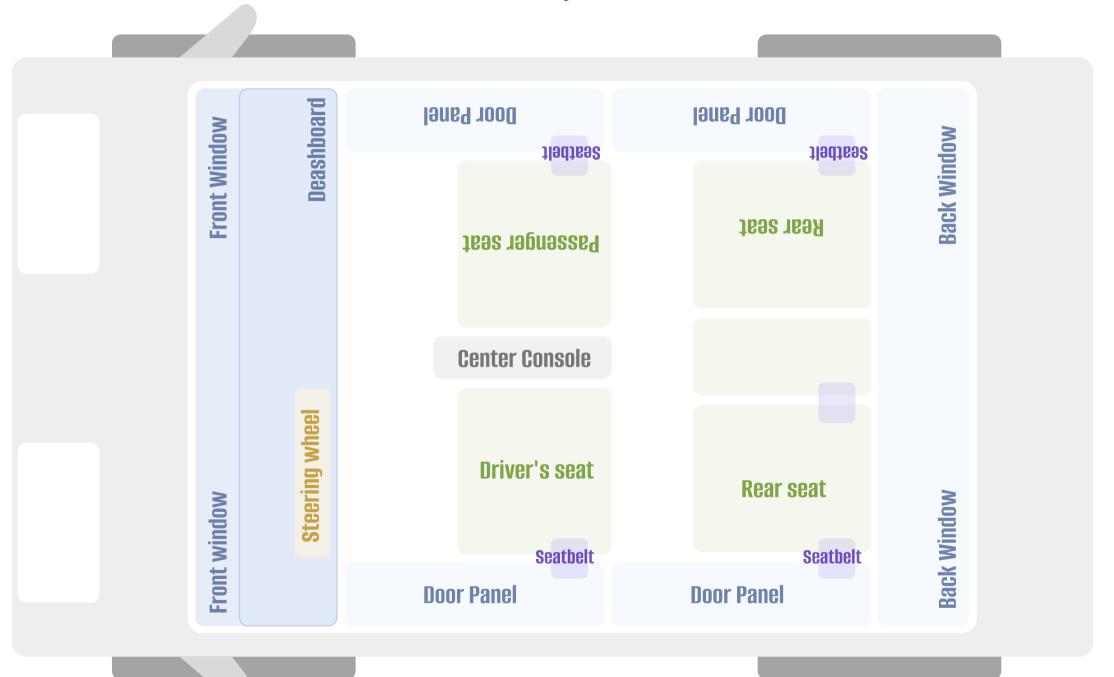
Please provide your feedback and suggestions!

Evaluation Board

User Perspective

Positive Judgment

User Perspective


Negative Judgment Company Perspective

> Positive Judgment

Company Perspective

> Negative Judgment

Interior Layout Board

